Self-calibration for lensless color microscopy

Applied Optics, vol. 56, 13

Principle of the self-calibration with an inverse problem approach.


Lensless color microscopy (also called in-line digital color holography) is a recent quantitative 3D imaging method used in several areas including biomedical imaging and microfluidics. By targeting cost-effective and compact designs, the wavelength of the low-end sources used is known only imprecisely, in particular because of their dependence on temperature and power supply voltage. This imprecision is the source of biases during the reconstruction step. An additional source of error is the crosstalk phenomenon, i.e., the mixture in color sensors of signals originating from different color channels. We propose to use a parametric inverse problem approach to achieve self-calibration of a digital color holographic setup. This process provides an estimation of the central wavelengths and crosstalk. We show that taking the crosstalk phenomenon into account in the reconstruction step improves its accuracy.